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A description is given of an algorithm used to solve the time dependent kidney equations 
for many nephrons. The unknowns of the problem have been divided into two groups: the 
first consists of the unknowns in the tubes that comprise each nephron, and the second 
consists of the unknowns that link the tubes and nephrons with each other. A comparison 
of the accuracy, storage and CPU time is made for a code utilizing a strictly numerical 
algorithm and codes using a combination of analytic and numerical calculations. 

1. INTRODUCTION 

The mammalian kidney consists of some lo6 nephrons that extend to varying 
depths within the renal medulla and function in concert to regulate urinary concentra- 
tion. Its operating mechanism has been explained in terms of a flow network in which 
a fluid containing several solutes traverses through a system of tubes, or nephron 
segments [l-3]. Each nephron segment may exchange fluid or solutes, along its length, 
with other nephrons through a common interstitial space. This interchange is caused 
by osmotic, hydrostatic and electrochemical driving forces acting across the tube 
walls. Different nephron depths permit individual solute gradients to be generated 
and are significant in the overall concentrating mechanism. 

The kidney model is formulated as a multi-point boundary value problem as follows: 
Given (1) hydrostatic pressure of blood entering and leaving the kidney, (2) the con- 
centration of solutes in the entering blood flow, and (3) the bladder pressure due to 
urine formation by the kidney, we wish to calculate the pressure, flow and solute 
concentrations along each nephron [4]. This leads to a system of differential equations 
describing the time dependent network flows. This paper describes an algorithm for 
solution of these equations and compares several computational schemes used to 
solve them. 

2. THE DIFFERENTIAL EQUATIONS 

Consider a kidney consisting of many nephrons and separated into an inner 
(medullary) and an outer (cortical) region (Fig. 1). The nephrons extending into the 
inner region generate a family of parallel flow tubes of varying lengths, which are 
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FIG. 1. Schematic of a sagittal section of the mammalian kidney (adapted from [I 11). 

separated by an interstitial space that is considered to be well mixed in each plane 
perpendicular to the tubes (Fig. 2). In the outer region, the tubes need not be parallel 
and are imbedded in a single well mixed inter&Gum. 

The variables in the ith tube are the axial volume flow, Fi, ; the hydrostatic pressure, 
pi ; and the concentration of the kth solute, cik . The water and solute transmural 
flux into the interstitium are denoted by Ji, and Jik respectively. With these notations, 
the time dependent equations describing flow along the ith tube are the incompressi- 
bility equations 

the solute conservation equations 

and the pressure drop equations 

(2.3) 

where Ri >, 0 is the resistance to flow, and Ai is the cross sectional area in tube i. 



MULTINEPHRON KIDNEY MODEL 237 

FIG. 2. Solute and water movement in a nephrovascular unit. 

For tubes that flow in a positive direction, from x = 0 to x = Li f 1, the boundary 
conditions are 

Fd) = Fioo 3 (2.4) 

Pi(O) = Pi0 5 (2.5) 

Ci,(O) = Cik’J 1 I .< k < K. (2.6) 

If tube i is connected to tube i - 1 and the flow in each is positive, 

FiVO = E-l,VWi-11, (2.7) 

Pi0 = Pi-IG3, (2.8) 

ci7co = ci-,,k(~~-I), 1 <k<K. (2.9) 

If either tube has flow in the negative direction, analogous conditions are prescribed 
at the boundary. 

The variables in the interstitial space, which are defined analogously to the tube 
unknowns, are F,, , pm , c,~ and Fez:, pe and cClz in the medullary and cortical space 
respectively. The water and solute flux are similarly defined as J,,,,, , J,,. , Jlnlz and J,,;. 
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With these notations the incompressibility and pressure drop equations in the 
medullary interstitium are similar to the tubal equations, namely: 

and 

aF,, 
= - ax 

J m21, 

ah ~ = -R,F,, . 
ax 

(2.10) 

(2.1 I) 

The solute flow equations are written to account for bulk flow and diffusion, so that 

F,, = Fm,cmm - DI, acm’ 
ax’ I<k<K, (2.12) 

and 

1 <k<K. (2.13) 

In the cortical interstitium with fixed volume, V, , fluid balance requires that 

Jm, = --I;,,,(‘% (2.14) 
and solute balance that 

ac,, vcat = -kc(O) - Jck , 1 ,<k<K. (2.15) 

The boundary conditions to be satisfied by the interstitial equations are 

C,k(O) = cc7c 9 1 <k<K, (2.16) 

Pm(O) = PC 9 (2.17) 

and 

F,,(l) = F,,(l) = 0, 1 <k<K. (2.18) 

A boundary condition often used instead of matching the concentration at the corti- 
comedullary border as in (2.16) is 

Jrd1) 
cdC(l) = J,,(1) 2 I<k<K, (2.19) 

which states that the solute concentration at the closed end of the interstitial space is 
the concentration of the transmural flux. 

Transmural flux laws for all tubes except the proximal tubule are given by 

and 

Ji, = hi, 
[ 
2 RT(c,, - cid gili + pi - pm 

k I 
, (2.20) 

Jil, = &(cik - c,,k) + (1 - (Tik) Jiv(Cik + c,3/2 + $ik, 1 < k < K, (2.21) 
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where hi, is the hydraulic permeability coefficient of the ith tube, R is the gas constant, 
T is the absolute temperature, Q is the Staverman reflection coefficient of the wall 
of the ith tube for the kth solute, hik is its passive permeability for the kth solute, and 
yilc is the metabolically driven transport out of the ith tube. 

The metabolically driven transport is assumed to obey Michaelis-Menten kinetics, 
namely 

(2.22) 

where aik is the maximum rate of transport and b,, is the Michaelis constant. 
For the proximal tubule, transport is assumed isotonic, so that 

and 
Ji, = &v(O), 

Jik = Jivcik , 1 <k<K, 

where 01 is an arbitrary constant. 

(2.23) 

(2.24) 

In the medulla, water and mass conservation require that 

Jr,&) = - 1 J&>, O<X<l, (2.25) 

and 
(2.26) 

The cortical interstitial fluxes are defined in a similar manner. 

3. THE COMPUTATIONAL PROCEDURE 

For solution, the system of differential equations (2.1)-(2.3) and (2.10)-(2.15) is 
replaced with a system of finite difference equations. To describe these equations we 
select a mesh spacing dx and divide [0, LJ into J = L,/Ax subintervals, where 
1 3 Li , the length of the ith tube. A time increment At is chosen so that t, = iz At for 
n = 0, l,... . Letting F:(j) denote the approximate value of .Fiu(j Ax, tn) for j = 0, 
I >..., J, and writing the other unknowns similarly, we use the difference equations 

CXj> - CXj - 1) 

Ax = - ; [J;(j) + Ji”,(.i - 1)l 
1 <i<Z, 1 <j<J, (3.1) 

Pi"(j) - P&j - 1) 
AX 

= - i Ri[Fin,(j) + F&(j - l)] 

1 <i<Z, 1 <j,<J, (3.2) 

F:(j) c,“(j) - Fi”,(.i - 1) c?k(j - 1 > 

Ax = - i ] [JXi) + J&(j - 111 

+ cyk(j) - &l(j) + crk( j - 1) - cK”,-‘( j - 1) 
At I 

1 <i<Z, 1 ,(,j<J, 1 dkbK. (3.3) 

581/342-7 
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This difference scheme, which is centered in space and is backward in time, has been 
shown to be stable and accurate in approximating solutions of the kidney equations 
151. 

If we denote by y’” the vector of unknown flows, pressures and concentrations in 
the interstitial space and all nephrons at time t, and the system of difference and 
conservation equations by 4, we seek a solution of the system 

&yn, y-1) = 0 n = 1, 2,..., (3.4) 

where y” is a vector of initial values, and for n > 1 y”-l is obtained from the previous 
time iteration. 

For example, in a three nephron model with two small filtered and one nonfiltered 
solute and with nephron lengths proportional to J = 10, 6 and 3 respectively, eq. (3.4) 
is a system of 855 equations in as many unknowns. If Newton’s method is applied 
to solve this system, less than 10 % of the entries in the Jacobian matrix, M, are non- 
zero, thus a sparse matrix inversion algorithm might be used to obtain a solution to 
the linear system 

$b(yl”, y-1) - A4 Ayp = 0, (3.5) 

where yin is the Ith Newton iterate and 

r:+:l = yta - A yaR. (3.6) 

However, the advantage of solving a sequence of smaller problems has been demon- 
strated in [6] for a system of parallel flow tubes exchanging water and solute through 
an interstitial space. This technique is extended here to permit many nephrons coupled 
together through a common interstitial space. 

As in [6], the problem is partitioned by dividing the unknowns into two groups. 
The first consists of the unknowns describing the flows along the tubes, which are 
denoted by yi for the ith tube. The second consists of the unknowns that link the 
tubes in all nephrons together and are denoted by yc . These include the interstitial 
variables: volume flow, pressure and solute concentrations, as well as the three 
unknowns per nephron that are associated with the exit boundary conditions, venous 
and bladder pressure. 

The equations of the problem are, in a similar manner, divided into two groups, 
namely 

and 
MYin, y;-‘, yGn) = 0, i = 1, 2,... (3.7) 

dG(Yln, Y2n,..., yin, YE yGn) = 0. (3.8) 

Given an estimate of yen we solve (3.7) for each i. We do so stepwise and in the 
direction of flow [6]. Having yia for all i, we proceed to solve (3.8) and then obtain a 
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new estimate for yGTL. This process is iterated until yGIL is obtained to the desired 
accuracy. Then time is stepped forward and the procedure is repeated. 

In fact, equation (3.7) can be solved explicitly for yilL if Yen is assumed, since y:-’ 
is known. Newton’s method is used, and the analytic expression of the inverse of the 
Jacobian at each step is calculated. With the transmembrane flux laws given by 
equations (2.20) through (2.26) the algebra to calculate the inverse is especially 
tedious for four or more unknowns (when K > 2) but the use of an algebraic mani- 
pulator [7] has facilitated it. 

Equations (3.8) must be solved simultaneously, however, since the yGT1 depend on 
flows in both the positive and negative space directions. Its Jacobian, which is often 
more than half full, is calculated numerically by means of difference quotients because 
the number of unknowns is large-in the order of U(J + 1) + B, where U r= K +- 2, 
K is the number of solutes, J is the number of space intervals, and B is the number of 
exit boundary conditions to be satisfied. 

Various procedures for the solution of equations (3.7) and (3.8) are compared. 
In each case, given values for the global variables, yc , the solution in the tubes is 
obtained stepwise in the direction of flow. In one case, the flow equations (2.1) and 
(2.10) are integrated explicitly, thus reducing the number of unknowns in the Newton 
iterations for the tubes and for the interstitium; in another, only the tube flows are 
integrated out. In one instance, all Jacobians are approximated using difference 
quotients and are inverted numerically; in another, the pointwise Jacobian in the 
tubes is obtained analytically; in yet another, the pointwise Jacobian is inverted 
analytically, and the FORTRAN code for evaluation of the inverse generated by 
the algebraic manipulator, REDUCE. 

Procedure A consists of the solution of equations (2.1)-(2.3) and (2.10)-(2.15), 
with the inverse of the pointwise Jacobian computed analytically, and is described in 
detail in [6]. Procedure B is like A except that the volume flow in each tube is inte- 
grated explicitly. Procedure C is also like A except that the pointwise Jacobian is 
computed analytically and inverted numerically. In procedure D all flow equations 
are integrated out, and all Jacobians are computed numerically. This was the method 
that we first used to solve a model of the medulla [8] and of a complete single nephron 
[41. 

Figures 336 show profiles of salt and urea concentrations and of volume flow for 
a model with a distribution of cortical and juxtamedullary nephrons. The input param- 
eters used are given in Table I, and output of the model for a ratio of two cortical to 
one juxtamedullary nephron is shown in Table II. The concentration of salt and urea in 
the nephron is shown in Fig. 3 and 4, and normalized volume flow in the vasculature 
and the nephron is shown in Figs. 5 and 6. These show that a mesh with ten intervals 
yields a relatively smooth profile that is adequate to describe quantitative and quali- 
tative features of the model such as requirements in order to concentrate with passive 
transport in the inner medulla [IO]. A refinement of the mesh by a factor of two to 
twenty intervals, for example, shows about a I % error in total urine concentration. 

Table III shows for each procedure used the total urine concentration, Curine , 
the PDP-IO cpu time in seconds per interstitial iteration, and the total number of 
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FIG. 4. Urea concentration in a juxtamedullary nephron and the interstitium. 
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TABLE I 

Normalized Parameters 

Tube” 

G 
PGC 
DVR 1 
DVR 2 
CAVR 
AVR I 
AVR 2 
BC 
PT 
DHL 
AHL I 
AHL 2 
DN 1 
DN2 
CD 

h, ( 20”) 
1400 2 
300 28.5 
100 28.5 
100 a330 
100 4.9 
100 24.5 
100 2,f3@3 

0 0 
- 7 
20 10 
0 10 
0 10 

0.2 6 
0.2 6 
0.5 6 

(J h, h. 
- 
0 
0 
0 
0 
0 
0 
I 

- 
1 
1 
1 
1 
1 
1 

- 
4 

1,000 
1,000 

10,000 
l,O@ 
l,ooo 

0 
- 

0 
0.05,0.85" 

0.05 
0 
0 
0 

- 
4 

1,000 
l,ooo 

10,000 
1,000 
1,000 

0 
- 

0 
0 
0 
0 
0 

o., 0.02” 

RA = 10.5 X 10e4 
RE = 0.1 x 10-4 
R,, = 250. x lo-” 

01 = 0.5 

a = 0.7,O.b b = 0.1 
a = 1.3 b = 0.1 
a = 0.2 6 = 1. 
a = 0.45 b = 1. 

“G - Glomerulus, PGC - postglomerular capillary, DVR 1 - descending vas rectum for first 
(juxta-medullary) nephrovascular unit, CAVR - cortical ascending vas rectum, AVR 2 - ascending 
vas rectum for second (cortical) nephrovascular unit, BC - Bowman’s capsule, PT - proximal tubule, 
DHL - descending loop of Henle’s limb, AHL - ascending loop of Henle’s limb, DN - distal nephron, 
CD - collecting duct. 

e The first value refers to the outer medulla where 0. < x zs 0.5; the second refers to the inner 
medulla where 0.6 & x < 1. For 0.5 < x < 0.6 the value varies linearly. 

c The first value holds for 0. < x :< 0.4; the second holds for 0.5 < x < 1.; and h,, varies linearly 
for 0.4 < x < 0.5. 

interstitial iterations required to reduce the residuals to less than IO-j, which yields 
concentrations accurate to approximately three figures. After each tubal and inter- 
stitial iteration, if the residual has been reduced by an order of magnitude (EPJB = IO), 
the Jacobian has not been recalculated. 

Note that procedures A and B require the fewest iterations while procedure B 
requires the least cpu time. All schemes converge to essentially the same solution as 
shown by Curine after starting with the same initial guess. 

Table IV contains results for a ratio of seven cortical to one juxtamedullary 
nephron. When a reduction of the maximum residual by a factor of 10 is required to 
permit reusing the current Jacobian, procedure B converges to a solution including 
negative concentrations. A more stringent criterion of 50 leads to the desired positive 
solution at a corresponding cost in computer time. Note that in this case the number of 
interstitial iterations remains at 5 while the number of tube iterations increases. 

inverting the Jacobian numerically, as in procedure C, not only requires additional 
computer time, but requires more iterations to obtain the same accuracy as procedures 
A and B. Procedure D requires more iterations than procedures B and C, indicating 
that approximation of the volume flow in the interstitium substantially reduces the 
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TABLE II 

Results of Procedure A - 2/l Cortical to Juxtamedullary Nephrons 

Oncotic Hydrostatic 
Volume flow FTa Cl1 [Urea] pressure pressure 

(nl/min) (mOsm/300) (mOsm/300) (mm Hg) (mm JW 

Position” long short long short long short long short long short 

Aff 
G 
Eff 
PGC, 
PGC, 
DVR 
AVR 
CI 
BC 
PT 
DHL 
AHL 
DN 
CD 
Urine 
MI(O) 
MI(l) 

72.19 62.89 
72.19 62.89 
51.83 39.99 
35.90 39.70 
48.82 53.87 
15.94 0.29 
31.39 4.97 

- - 
20.35 22.90 
20.35 22.90 
10.18 11.45 
2.03 3.52 
2.03 3.52 
0.60 1.48 
0.00 0.05 
5.45 5.45 
0.00 0.00 

1.oQo 1.ooo 0.050 0.050 
1.000 1.000 0.050 0.050 
1.000 1.000 0.050 0.050 
1.ooo 1.ooo 0.050 0.050 
1.009 1.009 0.048 0.048 
1.000 I .ooo 0.050 0.050 
0.946 1.019 0.048 0.046 
1.011 1.011 0.048 0.048 
1.ooo 1.000 0.050 0.050 
1.000 1.000 0.050 0.050 
1.000 1.ooo 0.050 0.050 
5.011 3.252 0.250 0.163 
0.338 0.389 0.250 0.163 
0.017 0.062 0.853 0.388 
2.419 1.854 2.838 3.372 
1.011 1.011 0.048 0.048 
4.049 4.049 1.096 1.096 

22.61 22.61 
22.61 22.61 
31.48 35.58 
31.48 35.58 
23.15 26.18 
31.48 35.58 
16.01 2.08 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

- 
- 
- 

77.35 77.35 
50.63 54.03 
46.53 50.75 
46.35 50.63 

5.95 5.95 
46.35 50.63 
5.95 5.95 

14.04 14.04 
14.82 15.17 
14.82 15.17 
11.01 10.95 
9.58 9.82 
8.87 9.16 
8.63 8.63 
8.57 8.57 

14.04 14.04 
16.72 16.72 

a Aff - afferent to glomerulus, Eff - efferent to glomerulus, PGC, - afferent to post glomerular 
capillaries, CI - cortical interstitium, MI(O) - medullary interstitium at corticomedullary border, 
MI(l) - medullary interstitium at the papilla. 

TABLE III 

2/l Cortical to Juxtamedullary Nephrons (J = 10) 

Procedure A Procedure B Procedure C Procedure D 
- 

C urine 5.226 5.227 5.226 5.227 
cpu time/iteration 38.87 33.61 39.53 48.52 
Iterations 4 4 5 6 
Storage 2500 2500 2500 1521 

a Procedure A solves the full system of equations with the inverse of the pointwise Jacobian com- 
puted analytically. Procedure B solves a reduced system where the tube volume flows are integrated 
explicitly. In Procedure C the pointwise Jacobian is inverted numerically. Procedure D integrates 
out all flows, and all Jacobians for the reduced system are computed numerically. 
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TABLE IV 

7/l Cortical to Juxtamedullary Nephrons (J = 10) 

Procedure A Procedure B Procedure C Procedure D 

C urine 5.896 5.923” 5.896b 5.896 5.896 
cpu time/iteration 40.82 35.89 43.15 54.20 47.96 
Iterations 5 6 5 6 9 
Storage 2500 2500 2500 2500 1521 
EPJB 10 10 50 10 10 

a Results in flow reversal within the collecting duct and corresponding negative concentrations. 
* All concentrations are positive. 

accuracy. This is consistent with the results shown in Table 1, p. 63 of Farahzad and 
Tewarson [9]. 

The storage requirements for each procedure are in the order of (U(J + 1) + 3 V)z 
where U = K + 2 for procedures A, B and C and U = K + 1 in procedure D; K is 
the number of solutes; J is the number of space intervals and V is the number of 
distinct nephron populations (two populations, one cortical and one juxtamedullary, 
in the data shown). 

4. CONCLUSION 

Procedure A has been shown to be an efficient method to solve the time dependent 
renal flow equations for a multinephron model. Through an example, it is shown 
to be accurate, stable and to have an adequate radius of convergence for solutions to 
complex kidney models. 
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